必须声明标量变量 "@Script_ID"。 微小RNA在帕金森病发病机制中的研究进展-《赣南医学院学报》

[1]钟晓鹏a,周永刚b,邱 甜a,等.微小RNA在帕金森病发病机制中的研究进展[J].赣南医学院学报,2019,39(12):1254-1257.[doi:10.3969/j.issn.1001-5779.2019.12.017]
 ZHONG Xiao-penga,ZHOU Yong-gangb,QIU Tiana,et al.Research progress of microRNA in pathogenesis of Parkinson's disease[J].,2019,39(12):1254-1257.[doi:10.3969/j.issn.1001-5779.2019.12.017]





Research progress of microRNA in pathogenesis of Parkinson's disease
钟晓鹏1a周永刚1b邱 甜1a杨柳珍1a黄志华1c温二生1c薛进华1c2陈 涛1c
1.赣南医学院基础医学院 a.2017级本科生; b.2018级生物技术专业本科生; c.生理学教研室,江西 赣州 341000; 2.杜伊斯堡-埃森大学,埃森 德国 45122
ZHONG Xiao-peng1a ZHOU Yong-gang1b QIU Tian1a YANG Liu-zhen1a HUANG Zhi-hua1c WEN Er-sheng1c XUE Jin-hua1c2 CHEN Tao1c
1.School of Basic Medical Sciences, Gannan Medical University a.Undergraduate student of Grade 2017; b.Undergraduate student of Grade 2018; c.Department of Physiology, Ganzhou, Jiangxi 341000; 2.University Duisburg-Essen, Essen, Germany 45122
帕金森病 微小RNA 退行性疾病
Parkinson's disease microRNA Degenerative diseases
帕金森病(parkinson's disease,PD)是一种目前尚无根治方法的神经系统退行性疾病,主要症状为体位不稳、运动迟缓、僵硬和震颤,这些症状主要是中脑黑质致密部(Substantia nigra pars compacta,SNPC)多巴胺能(Dopaminergic,DAergic)神经元进行性丢失而引起的,常见于中老年人,给家庭和社会带来沉重的经济负担。PD的具体病因及发病机制尚不明确,目前认为遗传和环境因素间复杂的相互作用可能是帕金森病发病的主要原因。微小RNA在中枢神经系统内不同类型神经元群的发育过程中扮演重要角色,与PD的发生、发展亦有密切联系。本文就微小RNA在帕金森病发病机制中的研究进展进行综述。
Parkinson's disease(PD)is a kind of nervous systemic disease with no radical cure at present, and the main symptoms are postural instability, bradykinesia, rigidity and tremor. These symptoms are mainly caused by the progressive loss of Dopaminergic(DAergic)neurons in the Substantia nigra pars compacta(SNPC)of the midbrain. Common in the elderly, PD imposes a heavy financial burden on families and society. The etiology and pathogenesis of PD are still unclear, and it is believed that the complex interaction between genetic and environmental factors may be the main cause of Parkinson's disease. MicroRNAs play a profound role in the development of different neuron groups in the central nervous system and are closely related to the occurrence and development of PD. This article reviews the research progress of microRNAs in the pathogenesis of Parkinson's disease.


[1] Bertram L, Tanzi R E.The genetic epidemiology of neurodegen erative disease[J]. The Journal of Clinical Investigation, 2005, 115(6):1449-1457.
[2] Hirsch L, Jette N, Frolkis A, et al. Theincidence of Parkinson's disease: A systematic review and meta-analysis[J]. Neuroepidemiology, 2016, 46(4):292-300.
[3] Valente AX, das Neves RP, Oliveira PJ. Epigenetic engineering to reverse the Parkinson's expression state[J]. Parkinsonism Relat Disord, 2012, 18:717-721.
[4] Gage H, Storey L. Rehabilitation for Parkinson's disease:A systematic review of available evidence[J]. Clin.Rehabil, 2004, 18:463-482.
[5] LeWitt P A, Fahn S. Levodopa therapy for Parkinson disease:A look backward and forward[J]. Neurology, 2016, 86:S3-12.
[6] Brooks D J. Optimizing levodopa therapy for Parkinson's disease with levodopa/carbidopa/entacapone:Implications from a clinical and patient perspective.Neuropsychiatr[J]. Dis Treat, 2008, 4:39-47.
[7] Von Euler Chelpin M, Vorup-Jensen T. Targets and Mechanisms in Prevention of Parkinson's Diseasethrough Immunomodulatory Treatments[J]. Scand J Immunol, 2017, 85:321-330.
[8] Schapira AHV, Chaudhuri KR. Jenner P Non-motor features of Parkinson disease[J]. Nat Rev Neurosci, 2017, 18:435-450.
[9] Majidinia M, Mihanfar A, Rahbarghazi R, et al. The roles of non-coding RNAs in Parkinson's disease[J]. Mol Biol Rep, 2016, 43(11):1193-1204.
[10] Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output[J]. Nature, 2008, 455:64-71.
[11] Ha M, Kim VN. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15:509-524.
[12] Steven C, Cramer MD. Repairing the Human Brain after Stroke:Mechanisms of spontaneous recovery[J]. Ann Neurol, 2008, 63:272-287.
[13] Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431:350-355.
[14] Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C.elegans developmental timing[J]. Cell, 2001, 106:23-34.
[15] Lim LP,Lau NC,Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature, 2005, 433:769-773.
[16] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120:15-20.
[17] Hu Z, Yu D, Almeida-Suhett C, et al. Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury[J]. PLoS ONE, 2012, 7:e39357.
[18] Thome AD, Harms AS, Volpicelli-Daley LA, et al. MicroRNA-155 regulates alpha-synuclein-induced infammatory responses in models of parkinson disease[J]. J Neurosci,2016,6:2383-2390.
[19] Tatura R, Kraus T, Giese A, et al. Parkinson's disease:SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus[J]. Parkinsonism Relat Disord, 2016, 33:115-121.
[20] Nair VD, Ge Y. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson's disease striatum[J]. Neurosci Lett, 2016, 629:99-104.
[21] Cardo LF, Coto E, Ribacoba R, et al. MiRNA profile in the substantia nigra of Parkinson's disease and healthy subjects[J]. J Mol Neuro sci, 2014, 54:830-836.
[22] Choi DC, Chae YJ, Kabaria S, et al. MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA[J]. J Neurosci, 2014, 34:12725-12737.
[23] Schlaudraff F, Grundemann J, Fauler M, et al. Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease[J]. Neurobiol Aging, 2014, 35:2302-2315.
[24] Junn E, Lee KW, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7[J]. Proc Natl Acad Sci USA, 2009, 106:13052-13057.
[25] Kanagaraj N, Beiping H, Dheen ST, et al. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins[J]. Neuroscience, 2014, 272:167-179.
[26] Rivetti di Val Cervo P, Romanov RA, Spigolon G, et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model[J]. Nat Biotechnol,2017,35:444.
[27] Saraiva C, Paiva J, Santos T, et al. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease[J]. J Control Release, 2016, 235:291-305.
[28] Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease[J]. Nat Rev Neurosci, 2017, 18:435-450.
[29] Saraiva C, Paiva J, Santos T, et al. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease [J]. J Control Release, 2016, 235:291-305.
[30] Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in Parkinson's disease:from biomarkers to anti-inflammatory based therapies[J]. Biomed Res Int, 2015, 2015:628192.
[31] Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases[J]. Inflammopharmacology, 2007, 15:252-259.
[32] Maccallini C, Amoroso R. Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders[J]. Neural Regen Res, 2016, 11:1731-1734.
[33] Guo Z, Geller DA. microRNA and human inducible nitric oxide synthase[J]. Vitam Horm, 2014, 96:19-27.
[34] He Q, Wang Q, Yuan C, et al. Downregulation of miR-7116-5p in microglia by MPP(+)sensitizes TNF-alpha production to induce dopaminergic neuron damage[J]. Glia, 2017, 65:1251-1263.
[35] Yao L, Zhu Z, Wu J, et al. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in theinflammatory pathogenesis of Parkinson's disease[J]. FASEB J, 2019, 33:574-577.
[36] Yao L, Ye Y, Mao H, et al. MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson's disease[J]. J Neuroinflammation, 2018, 15:13.
[37] Chmielarz P, Konovalova J, Najam SS, et al. Dicer and microRNAs protect adult dopamine neurons[J]. Cell Death Dis, 2017, 8:e2813.
[38] Xie Y, Chen Y. MicroRNAs:emerging targets regulating oxidative stress in the models of Parkinson's disease[J]. Front Neurosci, 2016, 10:298.


[1]张 裕,袁阁欢,刘午阳.骨肉瘤中Micro-RNA的研究进展[J].赣南医学院学报,2018,38(12):1269.[doi:10.3969/j.issn.1001-5779.2018.12.024]
 ZHANG Yu,YUAN Ge-huan,LIU Wu-yang.Research Progress of MicroRNA in Osteosarcoma[J].,2018,38(12):1269.[doi:10.3969/j.issn.1001-5779.2018.12.024]
[2]温二生,杨柳珍,钟晓鹏,等.细胞分裂周期蛋白 42 在帕金森病模型小鼠认知功能障碍中的作用[J].赣南医学院学报,2019,39(06):546.[doi:10.3969/j.issn.1001-5779.2019.06.002]
 WEN Er-sheng,YANG Liu-zhen,ZHONG Xiao-peng,et al.The role of Cdc42 in cognitive dysfunction in PD model mice[J].,2019,39(12):546.[doi:10.3969/j.issn.1001-5779.2019.06.002]
[3]游 静,顾乔乔,余子云,等.帕金森病发病机制的研究进展[J].赣南医学院学报,2019,39(07):733.[doi:10.3969/j.issn.1001-5779.2019.07.022]
 YOU Jing,GU Qiao-qiao,YU Zi-yun,et al.Research progress on pathogenesis of Parkinson's disease[J].,2019,39(12):733.[doi:10.3969/j.issn.1001-5779.2019.07.022]
[4]余子云,游 静,汤坤鑫,等.帕金森病模型的研究现状[J].赣南医学院学报,2019,39(12):1258.[doi:10.3969/j.issn.1001-5779.2019.12.018]
 YU Zi-yun,YOU Jing,TANG Kun-xin,et al.Current status of Parkinson's disease models[J].,2019,39(12):1258.[doi:10.3969/j.issn.1001-5779.2019.12.018]


基金项目:国家创新创业训练项目(201810413009); 国家公派留学基金(201908360062); 江西省教育厅项目(No.GJJ180814); 赣南医学院校级一般项目(No.YB201817)
更新日期/Last Update: 2019-12-30