必须声明标量变量 "@Script_ID"。 肠道菌群在宿主抗柠檬酸杆菌感染中的作用和机制-《赣南医学院学报》

[1]谢 园,#,陈玲霞,等.肠道菌群在宿主抗柠檬酸杆菌感染中的作用和机制[J].赣南医学院学报,2019,39(10):973-978+1013.[doi:10.3969/j.issn.1001-5779.2019.10.001]
 XIE Yuan,CHEN Ling-xia,LIU Yu-xia,et al.The role of gut microbiota in host resistance against Citrobacter rodentium infection[J].,2019,39(10):973-978+1013.[doi:10.3969/j.issn.1001-5779.2019.10.001]
点击复制

肠道菌群在宿主抗柠檬酸杆菌感染中的作用和机制()
分享到:

《赣南医学院学报》[ISSN:1001-5779/CN:36-1154/R]

卷:
39
期数:
2019年10期
页码:
973-978+1013
栏目:
炎症与免疫·基础与临床
出版日期:
2019-11-24

文章信息/Info

Title:
The role of gut microbiota in host resistance against Citrobacter rodentium infection
文章编号:
1001-5779(2019)10-0973-07
作者:
谢 园1#陈玲霞2#刘雨霞3谢 璐2吴雄健4*刘志平23*
赣南医学院 1.2017级硕士研究生; 2.基础医学院; 3.炎症与免疫中心; 4.第一附属医院消化内科,江西 赣州 341000
Author(s):
XIE Yuan1 CHEN Ling-xia2 LIU Yu-xia3 XIE Lu2 WU Xiong-jian4 LIU Zhi-ping23
Gannan Medical University 1.Graduate Student, Grade 2017; 2.School of Basic Medicine; 3.Center for Immunology; 4.Department of Gastroenterology, The First Affiliated Hospital, Ganzhou, Jiangxi 341000
关键词:
肠道菌群 鼠类柠檬酸杆菌 肠道炎症
Keywords:
Gut microbiota Citrobacter rodentium Intestinal inflammation
分类号:
R378.2
DOI:
10.3969/j.issn.1001-5779.2019.10.001
文献标志码:
A
摘要:
随着经济水平的发展,炎症性肠病(IBD)患者逐渐增多。在研究 IBD 疾病的发病机制中,鼠类柠檬酸杆菌(C.rodentium)感染是常用的模型之一,可用于观察肠道宿主及环境因素对其易感性的影响。宿主抗C.rodentium感染的能力与肠道菌群、肠道上皮细胞及免疫细胞有关,其中肠道菌群是近期研究热点,可能为临床治疗提供新思路和新方法。乳酸杆菌(Lactobacillus)和分节丝状菌(SFB)可能通过促进细胞因子产生来增强宿主对C.rodentium的抗性; 毛螺菌科(Lachnospiraceae)的细菌可能促进短链脂肪酸的产生,从而提高宿主对C.rodentium感染的抗性; 嗜粘蛋白-艾克曼菌(Akkermansia muciniphila)则可能通过降解肠道粘液层,破坏肠道上皮屏障而减弱宿主对C.rodentium感染的抗性。本文围绕上述肠道细菌对宿主抗C.rodentium感染的作用和机制进行总结。
Abstract:
With the development of economic level, inflammatory bowel disease(IBD)patients are gradually increasing.Citrobacter rodentium infection is one of the commonly used models to study the pathogenesis of IBD.It can be used to observe the influence of host and environmental factors on host susceptibility.The host's ability to resist C.rodentium infection is associated with gut microbiota, intestinal epithelial cells and immune cells, among which gut microbiota is hot research topic, and can provide new ideas and methods for clinical treatment.Lactobacillus and Segmented filamentous bacterium can enhance cytokine production and increase the host resistance to Citrobacter infection; Lachnospiraceae produces short-chain fatty acids which increase the host resistance to Citrobacter infection; Akkermansia muciniphila can degree the intestinal mucosal layer, disrupt intestinal barrier, and decrease the host resistance to C.rodentium infection.This review will focus on the role of gut bacteria on host resistance to C.rodentium infection.

参考文献/References:

[1] Mullineaux-Sanders C, Sanchez-Garrido J, Hopkins EGD, et al.Citrobacter rodentium-host-microbiota interactions: Immunity, bioenergetics and metabolism[J].Nat Rev Microbiol, 2019, 17(11):701-715.
[2] Barthold SW, Osbaldiston G, Jonas A.Dietary, bacterial, and host genetic interactions in the pathogenesis of transmissible murine colonic hyperplasia[J].Laboratory animal science, 1977, 27(6):938-945.
[3] Vallance BA, Deng W, Jacobson K, et al.Host susceptibility to the attaching and effacing bacterial pathogen citrobacter rodentium[J].Infection and immunity, 2003, 71(6):3443-3453.
[4] Borenshtein D, Nambiar PR, Groff EB, et al.Development of fatal colitis in fvb mice infected with citrobacter rodentium[J].Infection immunity, 2007, 75(7):3271-3281.
[5] Papapietro O, Teatero S, Thanabalasuriar A, et al.R-spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea[J].Nature communications, 2013, 4:1898.
[6] Willing BP, Vacharaksa A, Croxen M, et al.Altering host resistance to infections through microbial transplantation[J].PloS one, 2011, 6(10):e26988.
[7] Connolly JP, Slater SL, O'Boyle N, et al.Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion[J].Nature communications, 2018, 9(1):4187.
[8] 闫一帆,姜敏,孙明军.炎症性肠病与肠道菌群[J].中国消化病杂志,2015,35(2):84-87.
[9] Ghosh S, DeCoffe D, Brown K, et al.Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs lps dephosphorylation activity causing sepsis[J].PloS one, 2013, 8(2):e55468.
[10] Jaeggi T, Kortman GA, Moretti D, et al.Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in kenyan infants[J].Gut, 2015, 64(5):731-742.
[11] Kortman GA, Mulder ML, Richters TJ, et al.Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens[J].European journal of immunology, 2015, 45(9):2553-2567.
[12] Galley JD, Yu Z, Kumar P, et al.The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor[J].Gut Microbes, 2014, 5(6):748-760.
[13] Galley JD, Mackos AR, Varaljay VA, et al.Stressor exposure has prolonged effects on colonic microbial community structure in citrobacter rodentium-challenged mice[J].Sci Rep, 2017, 7:45012.
[14] Maltz RM, Keirsey J, Kim SC, et al.Prolonged restraint stressor exposure in outbred cd-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids[J].Plos One, 2018, 13(5):e0196961.
[15] Mackos AR, Eubank TD, Parry NM, et al.Probiotic lactobacillus reuteri attenuates the stressor-enhanced severity of citrobacter rodentium infection[J].Infect Immun, 2013, 81(9):3253-3263.
[16] Vong L, Pinnell LJ, Maattanen P, et al.Selective enrichment of commensal gut bacteria protects against citrobacter rodentium-induced colitis[J].Am J Physiol Gastrointest Liver Physiol, 2015,309(303):G181-392.
[17] Collins JW, Chervaux C, Raymond B, et al.Fermented dairy products modulate citrobacter rodentium-induced colonic hyperplasia[J].The Journal of infectious diseases, 2014, 210(7):1029-1041.
[18] Waki N, Kuwabara Y, Yoshikawa Y, et al.Amelioration of citrobacter rodentium proliferation in early stage of infection in mice by pretreatment with lactobacillus brevis kb290 and verification using in vivo bioluminescence imaging[J].FEMS microbiology letters, 2016, 364(6):fnw254.
[19] Ryu S-H, Park J-H, Choi S-Y, et al.The probiotic lactobacillus prevents citrobacter rodentium-induced murine colitis in a tlr2-dependent manner[J].J Microbiol Biotechnol, 2016, 26:1333-1340.
[20] Kumar A, Anbazhagan AN, Coffing H, et al.Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with citrobacter rodentium[J].American Journal of Physiology-HeartCirculatory Physiology, 2016, 311(5):G817-G826.
[21] Chen C-C, Louie S, Shi HN, et al.Preinoculation with the probiotic lactobacillus acidophilus early in life effectively inhibits murine citrobacter rodentium colitis[J].Nature, 2005, 58(6):1185.
[22] Chen CC, Chiu CH, Lin TY, et al.Effect of probiotics lactobacillus acidophilus on citrobacter rodentium colitis: The role of dendritic cells[J].Pediatric research, 2009, 65(2):169-175.
[23] Mackos AR, Galley JD, Eubank TD, et al.Social stress-enhanced severity of citrobacter rodentium-induced colitis is ccl2-dependent and attenuated by probiotic lactobacillus reuteri[J].Mucosal immunology, 2016, 9(2):515.
[24] Jiang Y, Yang G, Meng F, et al.Immunological mechanisms involved in probiotic-mediated protection against citrobacter rodentium-induced colitis[J].Beneficial microbes, 2016, 7(3):397-407.
[25] Rodrigues DM, Sousa AJ, Johnson-Henry KC, et al.Probiotics are effective for the prevention and treatment of citrobacter rodentium-induced colitis in mice[J].The Journal of infectious diseases, 2012, 206(1):99-109.
[26] Johnson-Henry KC, Nadjafi M, Avitzur Y, et al.Amelioration of the effects of citrobacter rodentium infection in mice by pretreatment with probiotics[J].Journal of Infectious Diseases, 2005, 191(12):2106-2117.
[27] Ferreira P, da Silva J, Piazza R, et al.Immunization of mice with lactobacillus casei expressing a beta-intimin fragment reduces intestinal colonization by citrobacter rodentium[J].Clin Vaccine Immunol, 2011, 18(11):1823-1833.
[28] Pircalabioru G, Aviello G, Kubica M, et al.Defensive mutualism rescues nadph oxidase inactivation in gut infection[J].Cell host & microbe, 2016, 19(5):651-663.
[29] Davis C, Savage D.Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract[J].Infection and immunity, 1974, 10(4):948-956.
[30] Talham GL, Jiang H-Q, Bos NA, et al.Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system[J].Infection and immunity, 1999, 67(4):1992-2000.
[31] Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, et al.The key role of segmented filamentous bacteria in the coordinated maturation of gut helpert cell responses[J].Immunity, 2009, 31(4):677-689.
[32] Ivanov II, Atarashi K, Manel N, et al.Induction of intestinal th17 cells by segmented filamentous bacteria[J].Cell, 2009, 139(3):485-498.
[33] Galvez J.Role of th17 cells in the pathogenesis of human ibd[J].ISRN inflammation, 2014, 2014:928461.
[34] Torchinsky MB, Garaude J, Martin AP, et al.Innate immune recognition of infected apoptotic cells directs t(h)17 cell differentiation[J].Nature, 2009, 458(7234):78-82.
[35] 刘伟荣,舒小莉,顾伟忠,等.儿童肠道分节丝状菌(sfb)年龄分布特征及其与肠黏膜免疫关系初探[C].第十三届江浙沪儿科学术会议暨2016年浙江省医学会儿科学学术年会,中国浙江湖州:2016.
[36] He R, Shepard Lw Fau-Chen J, Chen J Fau-Pan ZK, et al.Serum amyloid a is an endogenous ligand that differentially induces il-12 and il-23[J].The Journal of Immunology, 2006, 177(176): 4072-4079.
[37] Furlaneto CJ, Campa A.A novel function of serum amyloid a: A potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil[J].Biochemical and biophysical research communications, 2000, 268(262): 405-408.
[38] Cho H, Jaime H, de Oliveira RP, et al.Defective iga response to atypical intestinal commensals in il-21 receptor deficiency reshapes immune cell homeostasis and mucosal immunity[J].Mucosal Immunology, 2018, 12(1):85-96.
[39] Roberts ME, Bishop JL, Fan X, et al.Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susceptibility to enteric pathogens[J].Journal of immunology, 2014, 193(10):5249-5263.
[40] Ramesh R, Kozhaya L, McKevitt K, et al.Pro-inflammatory human th17 cells selectively express p-glycoprotein and are refractory to glucocorticoids[J].The Journal of experimental medicine, 2014, 211(1):89-104.
[41] Ryz NR, Lochner A, Bhullar K, et al.Dietary vitamin d3 deficiency alters intestinal mucosal defense and increases susceptibility to citrobacter rodentium-induced colitis[J].American Journal of Physiology-Gastrointestinal and Liver Physiology, 2015, 309(9):G730-G742.
[42] He L, Zhou M, Li YC.Vitamin d/vitamin d receptor signaling is required for normal development and function of group 3 innate lymphoid cells in the gut[J].iScience, 2019, 17:119-131.
[43] Lin YD, Arora J, Diehl K, et al.Vitamin d is required for ilc3 derived il-22 and protection from citrobacter rodentium infection[J].Front Immunol, 2019, 10:1.
[44] Meehan CJ, Beiko RG.A phylogenomic view of ecological specialization in the lachnospiraceae, a family of digestive tract-associated bacteria[J].Genome Biology and Evolution, 2014, 6(3):703-713.
[45] Kasubuchi M, Hasegawa S, Hiramatsu T, et al.Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation[J].Nutrients, 2015, 7(4):2839-2849.
[46] Jiminez JA, Uwiera TC, Abbott DW, et al.Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal inflammation in mice infected with citrobacter rodentium[J].mSphere, 2017, 2(4):pii:e00243-17.
[47] Brown K, Abbott DW, Uwiera RRE, et al.Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice[J].Gut Microbes, 2018, 9(3):218-235.
[48] de Vos WM.Microbe profile: akkermansia muciniphila: A conserved intestinal symbiont that acts as the gatekeeper of our mucosa[J].Microbiology, 2017, 163(5):646-648.
[49] Amandine E, Clara B, Lucie G, et al.Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J].Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22):9066-9071.
[50] 赵凡,李春保.肠道菌akkermansia muciniphila的特性及其与机体健康的关系[J].微生物学通报,2017,44(6):1458-1463.
[51] Routy B, Le CE, Derosa L, et al.Gut microbiome influences efficacy of pd-1-based immunotherapy against epithelial tumors[J].Science, 2017, 359(6371):91.
[52] Desai MS, Seekatz AM, Koropatkin NM, et al.A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J].Cell, 2016, 167(5):1339-1353.
[53] Ahmed I, Roy BC, Raach RT, et al.Enteric infection coupled with chronic notch pathway inhibition alters colonic mucus composition leading to dysbiosis, barrier disruption and colitis[J].PLoS One, 2018, 13(11):e0206701.
[54] Plovier H, Everard A, Druart C, et al.A purified membrane protein from akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J].Nat Med, 2017, 23(1):107-113.
[55] Rossen NG, MacDonald JK, de Vries EM, et al.Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review[J].WJG, 2015, 21(17): 5359.
[56] Fedorak RN.Understanding why probiotic therapies can be effective in treating ibd[J].Journal of clinical gastroenterology, 2008, 42:S111-S115.
[57] 张海英,吕欣,李玉珍.微生态制剂的安全性及其临床应用[J].药物不良反应杂志,2008,10(5):183-185.
[58] Isaacs K, Herfarth H.Role of probiotic therapy in ibd[J].Inflammatory bowel diseases, 2008, 14(11):1597-1605.

相似文献/References:

[1]谢 华,何良梅,刘 瑶,等.肠道菌群与炎症性肠病[J].赣南医学院学报,2017,37(04):659.[doi:10.3969/j.issn.1001-5779.2017.04.050]
 XIE Hua,HE Liang-mei,LIU Yao,et al.Gut Microbiota and Inflammatory Bowel Diseases[J].,2017,37(10):659.[doi:10.3969/j.issn.1001-5779.2017.04.050]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(31560260,31960163); 江西省自然科学基金项目(20151BAB205061, 20171ACB20024,20181BAB205032); 赣南医学院人才启动基金项目(QD201404); 赣南医学院2018年度研究生创新课题(YC2018-X009)
通信作者:刘志平,男,博士,教授,研究方向:炎症和癌症的免疫学机制。E-mail:Zhiping.Liu@gmu.edu.cn
通信作者:吴雄健,男,博士,副主任医师,副教授,研究方向:消化系疾病的基础与临床研究。E-mail:13767714655@126.com
#共同第一作者; *共同通信作者
更新日期/Last Update: 2019-11-20