必须声明标量变量 "@Script_ID"。 胞内模式识别受体在抗白色念珠菌感染中的作用研究进展-《赣南医学院学报》

[1]余达浪,*,陈玲霞,等.胞内模式识别受体在抗白色念珠菌感染中的作用研究进展[J].赣南医学院学报,2019,39(10):989-993+1017.[doi:10.3969/j.issn.1001-5779.2019.10.004]
 YU Da-lang,CHEN Ling-xia,XIE Lu,et al.Research progress on the roles of intracellular pattern recognition receptors in host defense against Candida albicans infection[J].,2019,39(10):989-993+1017.[doi:10.3969/j.issn.1001-5779.2019.10.004]
点击复制

胞内模式识别受体在抗白色念珠菌感染中的作用研究进展()
分享到:

《赣南医学院学报》[ISSN:1001-5779/CN:36-1154/R]

卷:
39
期数:
2019年10期
页码:
989-993+1017
栏目:
炎症与免疫·基础与临床
出版日期:
2019-11-24

文章信息/Info

Title:
Research progress on the roles of intracellular pattern recognition receptors in host defense against Candida albicans infection
文章编号:
1001-5779(2019)10-0989-06
作者:
余达浪1* 陈玲霞2*谢 璐2刘志春2刘志平2
赣南医学院 1.2017级硕士研究生; 2.基础医学院, 江西 赣州 341000
Author(s):
YU Da-lang1 CHEN Ling-xia2 XIE Lu2 LIU Zhi-chun2 LIU Zhi-ping2
Gannan Medical University 1.Grade 2017 Graduate Student; 2.School of Basic Medicine, Ganzhou, Jiangxi 341000
关键词:
模式识别受体 白色念珠菌 作用机制
Keywords:
pattern recognition receptor Candida albicans mechanism
分类号:
R379.4
DOI:
10.3969/j.issn.1001-5779.2019.10.004
文献标志码:
A
摘要:
模式识别受体(PRRs)是宿主抵抗白色念珠菌入侵的第一道屏障,通过识别并结合白色念珠菌表面的病原体相关分子模式(PAMP),激活机体的固有免疫应答,从而发挥抗菌作用。目前机体主要有两类模式识别受体,其中胞内模式识别受体,在抗白色念珠菌感染发挥了重要作用,越来越受到大家的重视。本文就胞内模式识别受体的类型及它们在抗白色念珠菌感染中作用机制进行综述。
Abstract:
Pattern recognition receptors(PRRs)are the first barrier against Candida albicans invasion, and the body's innate immune response are activated by recognizing and binding pathogen-associated molecular patterns(PAMPs)on the surface of C.albicans to exert an antibacterial effect.At present, there are mainly two types of PRRs in the body, and the intracellular PRRs play an important role in host against C.albicans infection, and has received more and more attention.In this paper, the types of intracellular PRRs and their mechanisms in host against C.albicans infection are reviewed.

参考文献/References:

[1] Jang J H, Shin H W, Lee J M, et al.An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp[J].Mediators of Inflammation, 2015,9(28):1-12.
[2] Khan M M, Koppenol-Raab M, Kuriakose M, et al.Host-pathogen dynamics through targeted secretome analysis of stimulated macrophages[J].Journal of Proteomics, 2018,189(2):34-38.
[3] 旷星星,吴移谋.NLRC4炎症小体在细菌感染中的免疫调控作用[J].中南医学科学杂志,2017,45(1):1-6.
[4] 吴丹.炎症小体调控机制的研究进展[J].微生物学免疫学进展, 2015,43(1):59-63.
[5] Zhao X, Guo Y, Jiang C, et al.JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression[J].Nature Medicine, 2017, 23(3):337-346.
[6] Brown G D, Denning D W, Gow N A R, et al.Hidden killers: human fungal infections[J].Science Translational Medicine, 2012,4(165):1-9.
[7] Kim J Y.Human fungal pathogens: Why should we learn?[J].Journal of Microbiology,2016,54(3):145.
[8] 杨传楹, 陈恒, 杨英阁.某院近10年儿童侵袭性真菌感染状况分析[J].中华医院感染学杂志, 2017,27(10):2370-2373.
[9] Braunsdorf C, Leibundgutlandmann S.Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C.albicans[J].Pathogens, 2018,7(1):11-23.
[10] 雷国伟, 毛立明, 李华, 等.炎症小体在对抗微生物感染中的作用[J].中国细胞生物学学报, 2011,33(12):1301-1315.
[11] 徐志庆, 吴大强, 邵菁, 等.NLRP3炎症小体与真菌感染[J].中国真菌学杂志, 2017,12(3):162-167.
[12] 金芬芬, 宋若会, 屠彦红.NLRP3炎性小体研究进展[J].中医药临床杂志, 2018,30(3):564-567.
[13] Jo E K, Kim J K, Shin D M, et al.Molecular mechanisms regulating NLRP3 inflammasome activation[J].Cellular Molecular Immunology, 2015,13(2):148-159.
[14] Lim H, Dong S M, Park H, et al.Flavonoids interfere with NLRP3 inflammasome activation[J].Toxicology & Applied Pharmacology, 2018,355(1):93-102.
[15] Margherita C, Harrison O J, Chris S, et al.IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+)Th17 cells[J].Journal of Experimental Medicine, 2012,209(9):1595-1609.
[16] Krishnan S M, Sobey C G, Latz E, et al.IL-1β and IL-18: inflammatory markers or mediators of hypertension?[J].British Journal of Pharmacology, 2014,171(3):5589-5602.
[17] Kosaka A, Yan H, Ohashi S, et al.Lactococcus lactis subsp.cremoris FC triggers IFN-γ production from NK and T cells via IL-12 and IL-18[J].International Immunopharmacology, 2012,14(4):729-733.
[18] Kinoshita T, Imamura R, Kushiyama H, et al.NLRP3 mediates NF-kappaB activation and cytokine induction in microbially induced and sterile inflammation[J].PLoS One, 2015,10(3):1-12.
[19] Rajamäki K, Mäyränpää M I, Risco A, et al.p38δ MAPK: A Novel Regulator of NLRP3 Inflammasome Activation With Increased Expression in Coronary Atherogenesis[J].Arteriosclerosis Thrombosis & Vascular Biology, 2016,36(9):1937-1946.
[20] Masahiro O, Atsushi M, Akihiko Y, et al.The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation[J].Journal of Biological Chemistry, 2014,289(47):32926-32936.
[21] Huang Y, Hua M, Cui X.Fungal β-Glucan Activates the NLRP3 Inflammasome in Human Bronchial Epithelial Cells Through ROS Production[J].Inflammation, 2017,41(3):1-10.
[22] Orlowski G M, Colbert J D, Shruti S, et al.Multiple Cathepsins Promote Pro-IL-1β Synthesis and NLRP3-Mediated IL-1β Activation[J].Journal of Immunology, 2015,196(4):1685-1697.
[23] 黄谦, 谢青.NLRP3炎性小体与适应性免疫研究进展[J].国际流行病学传染病学杂志, 2012,39(2):125-128.
[24] Sandhya G, Vijay A K R, Lukas B, et al.Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans[J].Journal of Immunology, 2014,193(5):2519-2530.
[25] Silva N C, Nery J M, Dias A L.Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance[J].Mycoses, 2013,57(1):1-11.
[26] Pietrella D, Pandey N, Elena G, et al.Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome[J].European Journal of Immunology, 2013,43(3):679-692.
[27] Gabrielli E, Pericolini E, Luciano E, et al.Induction of Caspase-11 by Aspartyl Proteinases of Candida albicans and Implication in Promoting Inflammatory Response[J].Infection and Immunity, 2015, 83(5):1940-1948.
[28] Wellington M, Koselny K, Sutterwala F S, et al.Candida albicans triggers NLRP3-mediated pyroptosis in macrophages.[J].Eukaryotic Cell, 2014, 13(2):329-340.
[29] Peters B M, Palmer G E, Nash A K, et al.Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis[J].Infection & Immunity, 2014,82(2):532.
[30] Sophie J, Ning M, Sadler J J, et al.Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome[J].Journal of Immunology, 2010,183(4):3578-3581.
[31] Bruno V M, Shetty A C, Junko Y, et al.Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome[J].Mbio,2015,6(2):1-15.
[32] Tucey T M, Verma-Gaur J, Nguyen J, et al.The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals[J].mSphere, 2016,1(3):1-18.
[33] Wideman J G, Gawryluk R M R, Gray M W, et al.The Ancient and Widespread Nature of the ER-Mitochondria Encounter Structure[J].Molecular Biology and Evolution, 2013,30(9):2044-2049.
[34] Leng F W, Xie C, Wang D C.Structure and Self-assembly of NLRP10[J].Progress in Biochemistry & Biophysics, 2015,42(12):1112-1118.
[35] Damm A, Lautz K, Kufer T A.Roles of NLRP10 in innate and adaptive immunity[J].Microbes & Infection, 2013,15(6-7):516-523.
[36] Sophie J, Eisenbarth S C, Olivier A K, et al.Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans[J].Journal of Immunology, 2012,189(10):4713-4717.
[37] Federico C, Maria Grazia T, Alvaro G, et al.Cytosolic 5'-nucleotidase Ⅱ interacts with the leucin rich repeat of NLR family member Ipaf[J].Plos One, 2015, 10(3):1-12.
[38] Yuan F, Kolb R, Pandey G, et al.Involvement of the NLRC4-Inflammasome in Diabetic Nephropathy[J].Plos One, 2016,11(10):1-14.
[39] Jeffrey T, Sandhya G, Elaheh A, et al.A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans[J].Plos Pathogens, 2011,7(12):1-14.
[40] 陈天君, 刘清梅, 孙燕.RNA病毒逃避天然免疫机制的研究新进展[J].细胞与分子免疫学杂志, 2016,32(10):1412-1415.
[41] Jaeger M, Lee R V D, Cheng S C, et al.The RIG-I-like helicase receptor MDA5(IFIH1)is involved in the host defense against Candida infections[J].European Journal of Clinical Microbiology & Infectious Diseases, 2015,34(5):963-974.
[42] Smeekens S P, Ng A, Kumar V, et al.Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans[J].Nature Communications, 2013,4(1):1342-1362.
[43] Jenkinson E M.Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling[J].Nature Genetics, 2014,46(5):503-509.
[44] Olivia M, Christelle B, Florian Z, et al.Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections[J].Plos Pathogens, 2012,8(7):1-15.
[45] Yifei Zhang, Hua Rong, Fang-Xiong Zhang, et al.A Membrane Potential- and Calpain-Dependent Reversal of Caspase-1 Inhibition Regulates Canonical NLRP3 Inflammasome[J].Cell Reports, 2018, 24(9):2356-2369.
[46] Jiang H, He H, Chen Y, et al.Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders[J].Journal of Experimental Medicine, 2017,214(11):3219-3239.
[47] He H, Hua J, Yun C, et al.Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity[J].Nature Communications, 2018, 9(1):2550-2562.
[48] Stawowczyk M, Naseem S, Montoya V, et al.Pathogenic Effects of IFIT2 and Interferon-β during Fatal Systemic Candida albicans Infection[J].Mbio, 2018, 9(2):1-17.
[49] Huang Y, Jiang H, Chen Y, et al.Tranilast directly targets NLRP3 to treat inflammasome-driven diseases[J].Embo Molecular Medicine, 2018,10(4):1-15.

相似文献/References:

[1]贺慧娟,谢水祥.中草药抗白色念珠菌的作用机制[J].赣南医学院学报,2017,37(06):979.[doi:10.3969/j.issn.1001-5779.2017.06.044]
 HE Hui-juan,XIE Shui-xiang.Mechanism of Chinese Herbal Medicine Against Candida Albicans[J].,2017,37(10):979.[doi:10.3969/j.issn.1001-5779.2017.06.044]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(31560260,31960163); 江西省自然科学基金项目(20171ACB20024,20181BAB205032); 江西省教育厅课题(GJJ180803); 赣南医学院人才启动基金项目(QD201404)
通信作者:刘志平,男,博士,教授,研究方向:炎症和癌症的免疫学机制。E-mail:Zhiping.Liu@gmu.edu.cn
通信作者:刘志春,男,硕士,副教授,研究方向:真菌感染机制。E-mail:185876462@qq.com
*共同第一作者
更新日期/Last Update: 2019-11-20