必须声明标量变量 "@Script_ID"。 甜菜碱通过AMPK通路改善非酒精性脂肪肝病研究进展-《赣南医学院学报》

[1]陈伟强,张晓丽,王烈峰.甜菜碱通过AMPK通路改善非酒精性脂肪肝病研究进展[J].赣南医学院学报,2019,39(12):1266-1271.[doi:10.3969/j.issn.1001-5779.2019.12.020]
 CHEN Wei-qiang,ZHANG Xiao-li,WANG Lie-feng.The mechanism of betaine on Nonalcoholic fatty liver disease through AMPK pathway[J].,2019,39(12):1266-1271.[doi:10.3969/j.issn.1001-5779.2019.12.020]
点击复制

甜菜碱通过AMPK通路改善非酒精性脂肪肝病研究进展()
分享到:

《赣南医学院学报》[ISSN:1001-5779/CN:36-1154/R]

卷:
39
期数:
2019年12期
页码:
1266-1271
栏目:
综述
出版日期:
2019-12-31

文章信息/Info

Title:
The mechanism of betaine on Nonalcoholic fatty liver disease through AMPK pathway
文章编号:
1001-5779(2019)12-1266-06
作者:
陈伟强1张晓丽2王烈峰3
赣南医学院 1.2017级硕士研究生; 2.2016级硕士研究生; 3.基础医学院,江西 赣州 341000
Author(s):
CHEN Wei-qiang1 ZHANG Xiao-li2 WANG Lie-feng3
Gannan Medical University 1.Postgraduate Student, Grade 2017; 2.Postgraduate Student, Grade 2016; 3.Department of Biotechnology, Ganzhou, Jiangxi 341000
关键词:
非酒精性脂肪肝病 甜菜碱 腺苷酸活化蛋白激酶
Keywords:
Nonalcoholic fatty liver disease Betaine adenosine monophosphate-activated protein kinase
分类号:
R575.2
DOI:
10.3969/j.issn.1001-5779.2019.12.020
文献标志码:
A
摘要:
非酒精性脂肪肝病(Nonalcoholic fatty liver disease, NAFLD)是最常见的慢性肝病,是诱发心血管疾病、2型糖尿病和其他代谢疾病发生的危险因素,可以进一步发展为肝癌。NAFLD日益普遍,防治工作面临着巨大的挑战,至今没有特效药。甜菜碱通过腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)的抗炎症、抗氧化应激、抗脂质生成和改善胰岛素抵抗的作用调控肝脏脂质代谢,改善NAFLD,但是其作用机制尚不明确。因此,本文旨在探寻甜菜碱通过AMPK信号通路改善NAFLD的潜在机制。
Abstract:
Nonalcoholic fatty liver disease(NAFLD)is now one of the most common liver disease and an important risk factor for cardiovascular disease, type 2 diabetes mellitus and other metabolic diseases, and it commonly precedes more serious conditions, such as hepatocellular carcinoma. NAFLD is increasingly prevalent and the challenge of prevention and treatment is increasing. Currently, there are no specific drugs for the treatment of NAFLD. Betaine regulates hepatic lipid metabolism to ameliorate NAFLD through the anti-inflammation, anti-oxidation, anti-lipogenesis and insulin resistance of adenosine monophosphate-activated protein kinase(AMPK), but its mechanism is still elusive. This article aims to elucidate the potential mechanisms of betaine on NAFLD through AMPK pathway.

参考文献/References:

[1] Herbert T, Moschen A R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010,52(5):1836-1846.
[2] Bessone F, Razori M V, Roma M G. Molecular pathways of nonalcoholic fatty liver disease development and progression[J]. Cellular and Molecular Life Sciences, 2019,76(1):99-128.
[3] Mantovani A, Zaza G, Byrne C D, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis[J]. Metabolism, 2018,79:64-76.
[4] Lonardo A, Nascimbeni F, Mantovani A, et al. Hypertension, diabetes, atherosclerosis and NASH: cause or consequence?[J]. Journal of hepatology, 2018,68(2):335-352.
[5] Rinella M E. Nonalcoholic fatty liver disease: a systematic review[J]. Jama, 2015,313(22):2263-2273.
[6] Sookoian S, Puri P, Castaño G O, et al. Nonalcoholic steatohepatitis is associated with a state of betaine-insufficiency[J]. Liver International, 2017,37(4):611-619.
[7] Du J, Shen L, Tan Z, et al. Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet[J]. Nutrients, 2018,10(2):131.
[8] Veskovic M, Mladenovic D, Milenkovic M, et al. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease[J]. European journal of pharmacology, 2019,848:39-48.
[9] Zhou X, Chen J, Chen J, et al. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit[J]. The Journal of nutritional biochemistry, 2015,26(12):1678-1684.
[10] Ejaz A, Martinez-Guino L, Goldfine A B, et al. Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice[J]. Diabetes, 2016,65(4):902-912.
[11] Chen Q, Liu M, Yu H, et al. Scutellaria baicalensis regulates FFA metabolism to ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway[J]. Journal of natural medicines, 2018,72(3):655-666.
[12] Zhou X, He L, Zuo S, et al. Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease, 2018,1864(2):488-498.
[13] Ye J, Zhu N, Sun R, et al. Metformin Inhibits Chemokine Expression Through the AMPK/NF-κB Signaling Pathway[J]. Journal of Interferon & Cytokine Research, 2018,38(9):363-369.
[14] Dahlhoff C, Worsch S, Sailer M, et al. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels[J]. Molecular metabolism, 2014,3(5):565-580.
[15] Cai D, Yuan M, Liu H, et al. Maternal betaine supplementation throughout gestation and lactation modifies hepatic cholesterol metabolic genes in weaning piglets via AMPK/LXR-mediated pathway and histone modification[J]. Nutrients, 2016,8(10):646.
[16] Ahn C W, Choi Y J, Hong S H, et al. Involvement of multiple pathways in the protection of liver against high-fat diet-induced steatosis by betaine[J]. Journal of functional foods, 2015,17:66-72.
[17] Cai D, Liu H, Hu Y, et al. Gestational Betaine, Liver Metabolism, and Epigenetics[J]. Handbook of Nutrition, Diet, and Epigenetics, 2017, 2017:1-14.
[18] Lee J H, Jung J Y, Jang E J, et al. Combination of honokiol and magnolol inhibits hepatic steatosis through AMPK-SREBP-1 c pathway[J]. Experimental Biology and Medicine, 2015, 240(4): 508-518.
[19] Ahn C W, Choi Y J, Hong S H, et al. Involvement of multiple pathways in the protection of liver against high-fat diet-induced steatosis by betaine[J]. Journal of Functional Foods, 2015,17:66-72.
[20] Javary J, Allain-Courtois N, Saucisse N, et al. Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling[J]. Gut, 2018,67(12):2192-2203.
[21] Woods A, Williams J R, Muckett P J, et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet[J]. Cell reports, 2017,18(13):3043-3051.
[22] Maithilikarpagaselvi N, Sridhar M G, Swaminathan R P, et al. Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats[J]. Pharmaceutical biology, 2016,54(12):2857-2863.
[23] Sim W, Kim D G, Lee K J, et al. Cinnamamides, novel liver X receptor antagonists that inhibit ligand-induced lipogenesis and fatty liver[J]. Journal of Pharmacology and Experimental Therapeutics, 2015,355(3):362-369.
[24] Lee J, Hong S, Park S E, et al. AMP-activated protein kinase suppresses the expression of LXR/SREBP-1 signaling-induced ANGPTL8 in HepG2 cells[J]. Molecular and cellular endocrinology, 2015,414:148-155.
[25] Cai D, Wang J, Jia Y, et al. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids, 2016, 1861(1): 41-50.
[26] Li Y, Ma Z, Jiang S, et al. A global perspective on Fox01 in lipid metabolism and lipid-related diseases[J]. Progress in lipid research, 2017, 66: 42-49.
[27] Kim D H, Lee B, Kim M J, et al. Molecular Mechanism of Betaine on Hepatic Lipid Metabolism: Inhibition of Forkhead Box O1(FOX01)Binding to Peroxisome Proliferator-Activated Receptor Gamma(PPARγ)[J]. Journal of agricultural and food chemistry, 2016,64(36):6819-6825.
[28] Guo W, Li D, You Y, et al. Cystathionine γ-lyase deficiency aggravates obesity-related insulin resistance via Fox01-dependent hepatic gluconeogenesis[J]. The FASEB Journal, 2018,33(3):4212-4224.
[29] Geric I, Tyurina Y Y, Krysko O, et al. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency[J]. Immunology, 2018,153(3):342-356.
[30] Ejarque M, Ceperuelo-Mallafré V, Serena C, et al. Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells[J]. Int J Obes(lond), 2019, 43(6):1256-1268.
[31] Mishra M, Kowluru R A. DNA methylation-a potential source of mitochondria dna base mismatch in the development of diabetic retinopathy[J]. Molecular neurobiology, 2019,56(1):88-101.
[32] Kang H, Zhang Z, Yu L, et al. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation[J]. Journal of cellular biochemistry, 2018,119(7):5676-5685.
[33] Guo J, Ren W, Li X, et al. Altering of FTO in the serum and livers of NAFLD patients: A correlation analysis[J]. Int. J. Clin. Exp. Med, 2018,11:6046-6053.
[34] Wu W, Feng J, Jiang D, et al. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N 6-methyladenosine[J]. Scientific reports, 2017,7:41606.
[35] Deminice R, Da Silva R P, Lamarre S G, et al. Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism[J]. Amino acids, 2015,47(4):839-846.
[36] Sivanesan S, Taylor A, Zhang J, et al. Betaine and choline improve lipid homeostasis in obesity by participation in mitochondrial oxidative demethylation[J]. Frontiers in nutrition, 2018,5:61.
[37] Zhou J,Wan J,Shu X E, et al. N6-methyladenosine guides mRNA alternative translation during integrated stressresponse[J]. Molecular cell, 2018, 69(4):636-647.
[38] Weikel K A, Ruderman N B, Cacicedo J M. Unraveling the actions of AMP-activated protein kinase in metabolic diseases: Systemic to molecular insights[J]. Metabolism, 2016,65(5):634-645.
[39] Shedid S M, Abdel Magied N, Saada H N. Role of betaine in liver injury induced by the exposure to ionizing radiation[J]. Environmental toxicology, 2019,34(2):123-130.
[40] Restelli L M, Oettinghaus B, Halliday M, et al. Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21[J]. Cell reports, 2018,24(6):1407-1414.
[41] Zhang Y, Li L, Wang Q, et al. Fibroblast growth factor 21 induces lipolysis more efficiently than it suppresses lipogenesis in goat adipocytes[J]. Cytotechnology, 2018,70(5):1423-1433.
[42] Singhal G,Kumar G, Chan S, et al. Deficiency of fibroblast growth factor 21(FGF21)promotes hepatocellular carcinoma(HCC)in mice on a long term obesogenic diet[J]. Molecular metabolism, 2018, 13:56-66.
[43] Ruppert P M, Park J, Xu X, et al. Transcriptional profiling of PPARα-/- and CREB3L3-/- livers reveals disparate regulation of hepatoproliferative and metabolic functions of PPARα[J]. BMC genomics, 2019,20(1):199.
[44] Yuan X, Tsujimoto K, Hashimoto K, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood[J]. Nature communications, 2018,9(1):636.
[45] Osorio J S, Jacometo C B, Zhou Z, et al. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine[J]. Journal of dairy science, 2016,99(1):234-244.
[46] Ge C, Yu R, Xu M, et al. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats[J]. European journal of pharmacology, 2016,770:154-164.
[47] Wang X, Son M, Meram C, et al. Mechanism and Potential of Egg Consumption and Egg Bioactive Components on Type-2 Diabetes[J]. Nutrients, 2019,11(2):357.
[48] Cheng N, Chen S, Liu X, et al. Impact of SchisandraChinensis Bee Pollen on Nonalcoholic Fatty Liver Disease and Gut Microbiota in HighFat Diet Induced Obese Mice[J]. Nutrients, 2019,11(2):346.
[49] Lanzi C R, Perdicaro D J, Antoniolli A, et al. Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome[J]. Food & function, 2016,7(3):1544-1553.
[50] Kim D H, Kim S M, Lee B, et al. Effect of betaine on hepatic insulin resistance through FOX01-induced NLRP3 inflammasome[J]. The Journal of nutritional biochemistry, 2017,45:104-114.
[51] Li Z, Geng Y, Jiang J, et al. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus[J]. Evidence-Based Complementary and Alternative Medicine, 2014,2014:984-989.

备注/Memo

备注/Memo:
通信作者:王烈峰,男,博士,教授,硕士生导师,研究方向:免疫衰老。E-mail:469730795@qq.com
更新日期/Last Update: 2019-12-30