必须声明标量变量 "@Script_ID"。 bFGF在帕金森病治疗中的作用机制研究进展-《赣南医学院学报》

 ZHANG Guanyin-shenga,WU Yan-qing,YE Jun-mingb,et al.Research progress on the mechanism of bFGF in the treatment of Parkinson's disease[J].,2020,40(06):594-598.[doi:10.3969/j.issn.1001-5779.2020.06.013]





Research progress on the mechanism of bFGF in the treatment of Parkinson's disease
1.赣南医学院 a.2017级硕士研究生; b.麻醉系; c.2016级硕士研究生,江西 赣州 341000; 2.温州大学生命科学研究院,浙江 温州 325035
ZHANG Guanyin-sheng1a WU Yan-qing2 YE Jun-ming1b ZHONG Xing-feng1c HU Xiao-li1a
1.Gannan Medical University a.Postgraduate student, Grade 2017; b.Department of Anesthesiology; c.Postgraduate student, Grade 2016, Ganzhou, Jiangxi 341000; 2.The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035
帕金森病 碱性成纤维细胞生长因子 多巴胺能神经元
Parkinson's disease Basic fibroblast growth factor Dopaminergic neuron
帕金森病(Parkinson's disease, PD)是一种由黑质纹状体多巴胺能神经元变性丢失引起的神经退行性疾病,主要表现为静止性震颤、肌强直、运动迟缓。目前临床治疗PD的常用药物主要有复方左旋多巴制剂、多巴胺受体激动剂等,但是长期用药不良反应及并发症明显。近年有研究证实碱性成纤维细胞生长因子(Basic fibroblast growth factor, bFGF)具有神经保护作用,有望成为PD治疗的新方向。本文就bFGF在PD治疗中的作用机制研究进展进行综述。
Parkinson's disease(PD)is a common neurodegenerative disease in the central nervous system, which is mainly caused by the degeneration, and loss of the dopaminergic neurons in the substantia nigra, resulting in resting tremor, myotonic movement and bradykinesia. At present, levodopa and dopamine receptor agonist drugs are the most commonly used for the treatment of PD. However, the long-term use of these drugs could cause obvious side effects and complications. In recent years, basic fibroblast growth factor(bFGF)has been confirmed to have neuroprotective effects,and expected to become a new direction for the treatment of PD. Herein, this article focuses on the mechanism of bFGF in the treatment of this disease.


[1] HIRSCH L, JETTE N, FROLKIS A, et al. The Incidence of Parkinson”s Disease: A Systematic Review and Meta-Analysis[J]. Neuroepidemiology, 2016, 46(4):292-300.
[2] 刘疏影, 陈彪. 帕金森病流行现状[J].中国现代神经疾病杂志, 2016, 16(2):98-101.
[3] LEES AJ, HARDY J, REVESZ T. Parkinson's disease[J]. Lancet, 2009, 373(9680): 2055-2066.
[4] KALIA L V, LANG A E. Parkinson's disease[J]. Lancet, 2015, 386(9996):896-912.
[5] LILL C M, KLEIN C. Epidemiology and causes of Parkinson's disease[J]. Nervenarzt, 2017, 88: 345-355.
[6] YANG FAN, LIU YUNHUI, TU JIE, et al. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF[J]. Nat Commun, 2014, 5: 5627.
[7] YEOH JOYCE S G, DE HAAN GERALD. Fibroblast growth factors as regulators of stem cell self-renewal and aging[J]. Mech Ageing Dev, 2007, 128: 17-24.
[8] CHEN CHU-HUANG, POUCHER SIMON M, LU JONATHAN, et al. Fibroblast growth factor 2: from laboratory evidence to clinical application[J]. Curr Vasc Pharmacol, 2004, 2: 33-43.
[9] DAUER WILLIAM, PRZEDBORSKI SERGE. Parkinson's disease: mechanisms and models[J]. Neuron, 2003, 39: 889-909.
[10] LI AIQUN, GUO HONG, LUO XIAOYING, et al. Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons[J]. FASEB J, 2006, 20: 1263-5.
[11] YANG P H, ZHU J X, HUANG Y D, et al. Human Basic Fibroblast Growth Factor Inhibits Tau Phosphorylation via THE PI3K/Akt-GSK3β Signaling Pathway in a 6-Hydroxydopamine-Induced Model of Parkinson”s Disease[J]. Neurodegenerative Diseases, 2016, 16(5-6):357-369.
[12] CAI P, YE J, ZHU J, et al. Inhibition of Endoplasmic Reticulum Stress is Involved in THE Neuroprotective Effect of bFGF in THE 6-OHDA-Induced Parkinson's Disease Model[J]. Aging Dis, 2016, 7(4):336-449.
[13] HSUAN SL, KLINTWORTH HM, XIA Z. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways[J]. JouRNAl of Neuroscience, 2006, 26(17):4481-4491.
[14] ZHOU T, ZU G, ZHANG X, et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease[J]. Neuropharmacology, 2016, 101:480-489.
[15] L'EPISCOPO FRANCESCA, TIROLO CATALDO, TESTA NUNZIO, et al. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson's disease[J]. Stem Cells, 2014, 32: 2147-2163.
[16] ZHANG XINHUA, ZHOU ZHENG, WANG DAKUI, et al. Activation of phosphatidylinositol-linked D1-like receptor modulates FGF-2 expression in astrocytes via IP3-dependent Ca2+ signaling[J]. J Neurosci, 2009, 29: 7766-7775.
[17] YAO YUAN, HUANG CHEN, GU PING, et al. Combined MSC-Secreted Factors and Neural Stem Cell Transplantation Promote Functional Recovery of PD Rats[J]. Cell Transplant, 2016, 25: 1101-1113.
[18] CHUNG SANGMI, MOON JUNG-IL, LEUNG AMANDA, et al. ES cell-derived renewable and functional midbrain dopaminergic progenitors[J]. Proc Natl Acad Sci USA, 2011, 108: 9703-9710.
[19] NANDY SUSHMITA BOSE, MOHANTY SUJATA, SINGH MANISHA, et al. Fibroblast Growth Factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons[J]. J Biomed Sci, 2014, 21: 83.
[20] CHUN S Y, SOKER S, JANG Y J, et al. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro[J]. Journal of Korean Medical Science, 2016, 31(2):171-177.
[21] TILL J E, MCCULLOCH E A. Hemopoietic stem cell differentiation[J]. Biochim Biophys Acta, 1980, 605: 431-459.
[22] SIMINOVITCH L, MCCULLOCH E A, TILL J E. The distribution of colony-forming cells among spleen colonies[J]. J Cell Comp Physiol, 1963, 62: 327-336.
[23] VERGAÑO-VERA E, MÉNDEZ-GÓMEZ H R, HURTADO-CHONG A, et al. Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells[J]. Neuroscience, 2009, 162: 39-54.
[24] JAUMOTTE JULIANN D, WYROSTEK STEPHANIE L, ZIGMOND MICHAEL J. Protection of cultured dopamine neurons from MPP(+)requires a combination of neurotrophic factors[J]. Eur J Neurosci, 2016, 44: 1691-1699.
[25] WANG Q, SONG Y H, TANG Z, et al. Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation[J]. Genet Mol Res, 2016, 15: undefined.
[26] MAREI H E, LASHEN S, FARAG A, et al. Human olfactory bulb neural stem cells mitigate movement disorders in a rat model of Parkinson's disease[J]. Journal of Cellular Physiology, 2015, 230(7):1614.
[27] ALIZADEH R, HASSANZADEH G, JOGHATAEI M T, et al. In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic-like neurons[J]. European Journal of Neuroscience, 2017, 45(6):773-784.
[28] JENSEN PIA, GRAMSBERGEN JAN-BERT, ZIMMER JENS, et al. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension[J]. Exp Cell Res, 2011, 317: 1649-1662.
[29] NOISA PARINYA, RAIVIO TANELI, CUI WEI. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons[J]. Stem Cells Int, 2015, 2015: 647437.
[30] DELCROIX GAËTAN J-R, GARBAYO ELISA, SINDJI LAURENCE, et al. The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats[J]. Biomaterials, 2011, 32: 1560-1573.
[31] TATARD V M, VENIER-JULIENNE M C, BENOIT J P, et al. In vivo evaluation of pharmacologically active microcarriers releasing nerve growth factor and conveying PC12 cells[J]. Cell Transplant, 2004, 13: 573-583.
[32] XIONG NIAN, YANG HECHENG, LIU LING, et al. bFGF promotes the differentiation and effectiveness of human bone marrow mesenchymal stem cells in a rotenone model for Parkinson's disease[J]. Environ Toxicol Pharmacol, 2013, 36: 411-422.
[33] YU YIQUN, GU SHUTING,HUANG HAI, et al. Combination of bFGF, heparin and laminin induce the generation of dopaminergic neurons from rat neural stem cells both in vitro and in vivo[J]. J. Neurol. Sci., 2007, 255: 81-86.
[34] FAN LIXING, HU KAIMENG, JI KAIHONG, et al. Directed differentiation of aged human bone marrow multipotent stem cells effectively generates dopamine neurons[J]. In Vitro Cell. Dev. Biol. Anim., 2014, 50: 304-312.
[35] ALIAGHAEI ABBAS, GARDANEH MOSSA, MAGHSOUDI NADER, et al. Dopaminergic Induction of Umbilical Cord Mesenchymal Stem Cells by Conditioned Medium of Choroid Plexus Epithelial Cells Reduces Apomorphine-Induced Rotation in Parkinsonian Rats[J]. Arch Iran Med, 2016, 19: 561-570.
[36] 卢国辉, 蒋春梅, 洪涛, 等. 底蜕膜间充质干细胞分化为多巴胺能样神经元[J].中华神经外科疾病研究杂志, 2013, 12(4):322-326.
[37] ALIZADEH RAFIEH, KAMRAVA SEYED KAMRAN, BAGHER ZOHREH, et al. Human olfactory stem cells: As a promising source of dopaminergic neuron-like cells for treatment of Parkinson's disease[J]. Neurosci Lett, 2019, 696: 52-59.
[38] SOHEILIFAR MOHAMMAD HASAN, JAVERI ARASH, AMINI HOSSEIN, et al. Generation of Dopamine-Secreting Cells from Human Adipose Tissue-Derived Stem Cells In Vitro[J]. Rejuvenation Res, 2018, 21: 360-368.
[39] FUJII HIROMI, MATSUBARA KOHKI, SAKAI KIYOSHI, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats[J]. Brain Res, 2015, 1613: 59-72.
[40] ZHU GUANGHUI, CHEN GANPING, SHI LU, et al. PEGylated rhFGF-2 conveys long-term neuroprotection and improves neuronal function in a rat model of Parkinson's disease[J]. Mol Neurobiol, 2015, 51: 32-42.
[41] SCHURIG KATJA, ZIERIS ANDREA, HERMANN ANDREAS, et al. Neurotropic growth factors and glycosaminoglycan based matrices to induce dopaminergic tissue formation[J]. Biomaterials, 2015, 67: 205-213.
[42] ZHAO YING-ZHENG, LI XING, LU CUI-TAO, et al. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats[J]. Nanomedicine, 2014, 10: 755-764.
[43] LIN Q, WONG H L, TIAN F R, et al. Enhanced neuroprotection with decellularized brain extracellular matrix containing bFGF after intracerebral transplantation in Parkinson's disease rat model[J]. International Journal of Pharmaceutics, 2016, 517(1-2):383.


[1]温二生,杨柳珍,钟晓鹏,等.细胞分裂周期蛋白 42 在帕金森病模型小鼠认知功能障碍中的作用[J].赣南医学院学报,2019,39(06):546.[doi:10.3969/j.issn.1001-5779.2019.06.002]
 WEN Er-sheng,YANG Liu-zhen,ZHONG Xiao-peng,et al.The role of Cdc42 in cognitive dysfunction in PD model mice[J].,2019,39(06):546.[doi:10.3969/j.issn.1001-5779.2019.06.002]
[2]游 静,顾乔乔,余子云,等.帕金森病发病机制的研究进展[J].赣南医学院学报,2019,39(07):733.[doi:10.3969/j.issn.1001-5779.2019.07.022]
 YOU Jing,GU Qiao-qiao,YU Zi-yun,et al.Research progress on pathogenesis of Parkinson's disease[J].,2019,39(06):733.[doi:10.3969/j.issn.1001-5779.2019.07.022]
[3]钟晓鹏a,周永刚b,邱 甜a,等.微小RNA在帕金森病发病机制中的研究进展[J].赣南医学院学报,2019,39(12):1254.[doi:10.3969/j.issn.1001-5779.2019.12.017]
 ZHONG Xiao-penga,ZHOU Yong-gangb,QIU Tiana,et al.Research progress of microRNA in pathogenesis of Parkinson's disease[J].,2019,39(06):1254.[doi:10.3969/j.issn.1001-5779.2019.12.017]
[4]余子云,游 静,汤坤鑫,等.帕金森病模型的研究现状[J].赣南医学院学报,2019,39(12):1258.[doi:10.3969/j.issn.1001-5779.2019.12.018]
 YU Zi-yun,YOU Jing,TANG Kun-xin,et al.Current status of Parkinson's disease models[J].,2019,39(06):1258.[doi:10.3969/j.issn.1001-5779.2019.12.018]


更新日期/Last Update: 2020-07-30